A high-order fully explicit flux-form semi-Lagrangian shallow-water model

نویسندگان

  • Paul Aaron Ullrich
  • Peter Hjort Lauritzen
  • Christiane Jablonowski
چکیده

A new approach is proposed for constructing a fully explicit third-order mass-conservative semi-Lagrangian scheme for simulating the shallow-water equations on an equiangular cubed-sphere grid. State variables are staggered with velocity components stored pointwise at nodal points and mass variables stored as element averages. In order to advance the state variables in time, we first apply an explicit multi-step time-stepping scheme to update the velocity components and then use a semi-Lagrangian advection scheme to update the height field and tracer variables. This procedure is chosen to ensure consistency between dry air mass and tracers, which is particularly important in many atmospheric chemistry applications. The resulting scheme is shown to be competitive with many existing numerical methods on a suite of standard test cases and demonstrates slightly improved performance over other high-order finite-volume models. Copyright © 2014 John Wiley & Sons, Ltd.

منابع مشابه

A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations

A spectral element semi-Lagrangian (SESL) method for the shallow water equations on the sphere is presented. The sphere is discretized using a hexahedral grid although any grid imaginable can be used as long as it is comprised of quadrilaterals. The equations are written in Cartesian coordinates to eliminate the pole singularity which plagues the equations in spherical coordinates. In a previou...

متن کامل

A Multimoment Finite-Volume Shallow-Water Model on the Yin–Yang Overset Spherical Grid

A numerical model for shallow-water equations has been built and tested on the Yin–Yang overset spherical grid. A high-order multimoment finite-volume method is used for the spatial discretization in which two kinds of so-called moments of the physical field [i.e., the volume integrated average (VIA) and the point value (PV)] are treated as the model variables and updated separately in time. In...

متن کامل

Semi-lagrangian Transport Algorithms for the Shallow Water Equations in Spherical Geometry

Global atmospheric circulation models (GCM) typically have three primary algorithmic components: columnar physics, spectral tran-form, and semi-Lagrangian transport. In this study, several varients of a SLT method are studied in the context of test cases for the shallow water equations in spherical geometry. A grid point formulation is used with implicit, semi-implicit or explicit time integrat...

متن کامل

Some considerations for high-order ‘incremental remap’-based transport schemes: edges, reconstructions, and area integration

The problem of two-dimensional tracer advection on the sphere is extremely important in modeling of geophysical fluids and has been tackled using a variety of approaches. A class of popular approaches for tracer advection include ‘incremental remap’ or cell-integrated semi-Lagrangian-type schemes. These schemes achieve high-order accuracy without the need for multistage integration in time, are...

متن کامل

A ‘‘Vertically Lagrangian’’ Finite-Volume Dynamical Core for Global Models

A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water system. The 2D horizontalto-Lagrangian-surface transport and dynamical processes are then discr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014